ilqgames
A new real-time solver for large-scale differential games.
two_player_unicycle_4d.h
1 /*
2  * Copyright (c) 2019, The Regents of the University of California (Regents).
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above
13  * copyright notice, this list of conditions and the following
14  * disclaimer in the documentation and/or other materials provided
15  * with the distribution.
16  *
17  * 3. Neither the name of the copyright holder nor the names of its
18  * contributors may be used to endorse or promote products derived
19  * from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Please contact the author(s) of this library if you have any questions.
34  * Authors: David Fridovich-Keil ( dfk@eecs.berkeley.edu )
35  */
36 
37 ///////////////////////////////////////////////////////////////////////////////
38 //
39 // Two player dynamics modeling a unicycle with velocity disturbance.
40 // State is [x, y, theta, v], u1 is [omega, a], u2 is [dx, dy] and dynamics are:
41 // \dot px = v cos theta + dx
42 // \dot py = v sin theta + dy
43 // \dot theta = omega
44 // \dot v = a
45 //
46 ///////////////////////////////////////////////////////////////////////////////
47 
48 #ifndef ILQGAMES_DYNAMICS_TWO_PLAYER_UNICYCLE_4D_H
49 #define ILQGAMES_DYNAMICS_TWO_PLAYER_UNICYCLE_4D_H
50 
51 #include <ilqgames/dynamics/multi_player_dynamical_system.h>
52 #include <ilqgames/utils/types.h>
53 
54 #include <glog/logging.h>
55 
56 namespace ilqgames {
57 
59  public:
62 
63  // Compute time derivative of state.
64  VectorXf Evaluate(Time t, const VectorXf& x,
65  const std::vector<VectorXf>& us) const;
66 
67  // Compute a discrete-time Jacobian linearization.
68  LinearDynamicsApproximation Linearize(Time t, const VectorXf& x,
69  const std::vector<VectorXf>& us) const;
70 
71  // Distance metric between two states.
72  float DistanceBetween(const VectorXf& x0, const VectorXf& x1) const;
73 
74  // Position dimensions.
75  std::vector<Dimension> PositionDimensions() const { return {kPxIdx, kPyIdx}; }
76 
77  // Getters.
78  Dimension UDim(PlayerIndex player_idx) const {
79  DCHECK(player_idx == 0 || player_idx == 1);
80  return (player_idx == 0) ? kNumU1Dims : kNumU2Dims;
81  }
82  PlayerIndex NumPlayers() const { return kNumPlayers; }
83 
84  // Constexprs for state indices.
85  static const Dimension kNumXDims;
86  static const Dimension kPxIdx;
87  static const Dimension kPyIdx;
88  static const Dimension kThetaIdx;
89  static const Dimension kVIdx;
90 
91  // Constexprs for control indices.
92  static const PlayerIndex kNumPlayers;
93 
94  static const Dimension kNumU1Dims;
95  static const Dimension kOmegaIdx;
96  static const Dimension kAIdx;
97 
98  static const Dimension kNumU2Dims;
99  static const Dimension kDxIdx;
100  static const Dimension kDyIdx;
101 }; //\class TwoPlayerUnicycle4D
102 
103 // ----------------------------- IMPLEMENTATION ----------------------------- //
104 
105 inline VectorXf TwoPlayerUnicycle4D::Evaluate(
106  Time t, const VectorXf& x, const std::vector<VectorXf>& us) const {
107  CHECK_EQ(us.size(), NumPlayers());
108 
109  // Populate xdot one dimension at a time.
110  VectorXf xdot(xdim_);
111  xdot(kPxIdx) = x(kVIdx) * std::cos(x(kThetaIdx)) + us[1](kDxIdx);
112  xdot(kPyIdx) = x(kVIdx) * std::sin(x(kThetaIdx)) + us[1](kDyIdx);
113  xdot(kThetaIdx) = us[0](kOmegaIdx);
114  xdot(kVIdx) = us[0](kAIdx);
115 
116  return xdot;
117 }
118 
119 inline LinearDynamicsApproximation TwoPlayerUnicycle4D::Linearize(
120  Time t, const VectorXf& x, const std::vector<VectorXf>& us) const {
121  LinearDynamicsApproximation linearization(*this);
122 
123  const float ctheta = std::cos(x(kThetaIdx)) * time::kTimeStep;
124  const float stheta = std::sin(x(kThetaIdx)) * time::kTimeStep;
125 
126  linearization.A(kPxIdx, kThetaIdx) += -x(kVIdx) * stheta;
127  linearization.A(kPxIdx, kVIdx) += ctheta;
128 
129  linearization.A(kPyIdx, kThetaIdx) += x(kVIdx) * ctheta;
130  linearization.A(kPyIdx, kVIdx) += stheta;
131 
132  linearization.Bs[0](kThetaIdx, kOmegaIdx) = time::kTimeStep;
133  linearization.Bs[0](kVIdx, kAIdx) = time::kTimeStep;
134 
135  linearization.Bs[1](kPxIdx, kDxIdx) = time::kTimeStep;
136  linearization.Bs[1](kPyIdx, kDyIdx) = time::kTimeStep;
137 
138  return linearization;
139 }
140 
141 inline float TwoPlayerUnicycle4D::DistanceBetween(const VectorXf& x0,
142  const VectorXf& x1) const {
143  // Squared distance in position space.
144  const float dx = x0(kPxIdx) - x1(kPxIdx);
145  const float dy = x0(kPyIdx) - x1(kPyIdx);
146  return dx * dx + dy * dy;
147 }
148 
149 } // namespace ilqgames
150 
151 #endif